
Education

Biomedical Cloud Computing With Amazon Web Services
Vincent A. Fusaro1*, Prasad Patil1, Erik Gafni1, Dennis P. Wall1,2, Peter J. Tonellato1,2

1 Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, United States of America, 2 Department of Pathology, Beth Israel Deaconess Medical

Center, Boston, Massachusetts, United States of America

Introduction

Biomedical research in the post-ge-

nome era is intensely data-driven and

increasingly more integrative as new tech-

nologies are introduced, such as next- or

third-generation sequencing, mass spec-

trometry, and imaging to identify novel

biological insights. The volume and com-

plexity of biomedical data is increasing

exponentially as faster high-throughput

machines are introduced. As a result, many

research institutes, biotech companies,

pharmaceutical companies, and computa-

tional labs are considering cloud computing

as a cost-effective alternative to process and

store this vast amount of data. Efforts in

next-generation sequencing (NGS) [1–3],

comparative genomics [4], and pro-

teomics [5] have already successfully incor-

porated the cloud to expedite their data

processing. The challenge remains to decide

how to best take advantage of the flexibility of

cloud computing to conduct these and other

analyses. The purpose of this overview is

three-fold: 1) introduce biomedical cloud

computing, 2) provide a concrete methodol-

ogy detailing how projects are developed on

the cloud, and 3) demonstrate cloud com-

puting costs. We assume the reader has a

basic understanding of UNIX.

There are multiple cloud providers, both

commercial and open source, including

Amazon Web Services (AWS), Rackspace,

GoGrid, Nimbus, and Eucalyptus, each

contributing to the popularity and globaliza-

tion of cloud computing. For the purposes of

this guide, we focus on the use of AWS as the

cloud computing platform and adopt the

definition of Vaquero, who states that the

cloud is ‘‘a large pool of easily usable and

accessible virtualized resources (such as

hardware, development platforms, and/or

services). These resources can be dynamical-

ly re-configured to adjust to variable load

(scale), allowing for optimum resource utili-

zation’’ [6]. Cloud computing is ideal for

projects that require periodic computational

bursts, rapid prototyping, or fast turnaround

time. Furthermore, the cloud is an attractive

alternative to the limitations imposed by a

local computing environment such as long

job queues, unsupported software, or limited

server resources. One key difference between

traditional server-based (grid) computing and

the cloud is virtualization technology, which

enables the partitioning of a server’s hard-

ware resources into multiple ‘‘instances’’,

each running its own operating system in

isolation from the other instances. In prac-

tice, the virtualized instance appears to the

user to be an entirely separate computer,

even though the virtual instance may share a

combination of independent central process-

ing units (CPUs), memory, and storage

devices with other virtualized instances. An

example of this is running Windows on Mac

OS using Parallels or VMware. The eco-

nomic model for cloud computing is another

key difference, where you only pay for what

you use, much like electricity or water. In

essence, cloud computing is a commodity

service that can provide on-demand access to

a computational infrastructure and avoids

the fixed cost of capital investments in

computing hardware, computing mainte-

nance, and personnel.

Amazon Web Services

AWS provides the necessary computing

environment, including CPUs, storage, mem-

ory (RAM), networking, and operating

system, and is an example of ‘‘infrastructure

as a service’’ (IaaS). IaaS is popular with

computational biologists because it offers

more flexibility for designing projects ad

hoc. The majority of computational pro-

jects will make use of three AWS products

(see ‘‘Get Started with EC2’’ at http://

docs.amazonwebservices.com/AWSEC2/

2009-11-30/GettingStartedGuide/): Elas-

tic Compute Cloud (EC2), Elastic Block

Storage (EBS), and Simple Storage Service

(S3). For additional AWS products beyond

the scope of this overview, we refer the

reader to the AWS Web site (http://aws.

amazon.com/). EC2 contains a variety of

user selectable instance types that range in

computing power and cost (Table 1). An

instance boots within a few minutes and the

user is given root or administrator access.

An EBS volume is a storage device that can

be attached to a running instance, similar to

a USB thumb drive, and currently ranges in

size from 1 GB to 1 TB. EBS volumes are

redundantly backed up and offer approxi-

mately 99.7% durability, but they can be

further backed up to S3 by taking a

snapshot of the drive (an incremental

backup). S3 is an extremely reliable persis-

tent storage system that also makes data

readily available over the Internet. To

ensure reliability, the file system of S3 is

composed of ‘‘buckets’’ that are geograph-

ically distributed across Amazon’s multiple

data centers so that each file is backed up in

several locations. Thus, AWS is able to offer

99.999999999% durability and 99.99%

availability for file objects. By default all

buckets are marked as private; however,

Amazon and other institutions are making

large datasets available over S3 via public

buckets (http://aws.amazon.com/public

datasets/). Access to all of AWS’s services

can be done using eithera Web-basedconsole,

for beginners, or through the command line

using an AWS-specific application program-

ming interface (API), for advanced users.

AWS costs are generally based either on an

hourly rate or amount of data transferred or

stored or other services used (Table 1).

Security in the Cloud

Before beginning to use the cloud, it is

important to understand the basic best

Citation: Fusaro VA, Patil P, Gafni E, Wall DP, Tonellato PJ (2011) Biomedical Cloud Computing With Amazon
Web Services. PLoS Comput Biol 7(8): e1002147. doi:10.1371/journal.pcbi.1002147

Editor: Fran Lewitter, Whitehead Institute, United States of America

Published August 25, 2011

Copyright: � 2011 Fusaro et al. This is an open-access article distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

Funding: The study was funded by a National Library of Medicine EUREKA grant (PJT; R01LM010130) and an
educational grant from Amazon Web Services "Transforming Biomedical Research in the Cloud". The funders
had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: vfusaro@hms.harvard.edu

PLoS Computational Biology | www.ploscompbiol.org 1 August 2011 | Volume 7 | Issue 8 | e1002147

practices for cost control and data security

(for more detailed information, see http://

media.amazonwebservices.com/pdf/AWS_

Security_Whitepaper.pdf).

Use Public/Private Key Pair
In this cryptographic scheme, a pair of

keys is constructed, a public encryption key

and a private decryption key. The public

key is made available to anyone, but the

data encrypted by it can only be decrypted

by its paired private key. The private key

should never be shared because it repre-

Table 1. A summary of AWS pricing for basic computation, storage, and data transfer.

Resource Type Example Use AWS Service Service Unit CPUs (#xGHz)1 Memory (GB) Cost ($/Hr)2

Computation Running a 51-node cluster
(50 m2.2xlarge workers and
one m1.small master) for 8
hours costs $400.68.

EC2 t1.micro 261 0.6 0.020

m1.small 161 1.7 0.085

m1.large 262 7.5 0.340

m1.xlarge 462 15 0.680

c1.medium 262.5 1.7 0.170

c1.xlarge 862.5 7 0.680

m2.xlarge 263.25 17.1 0.500

m2.2xlarge 463.25 34.2 1.000

m2.4xlarge 863.25 68.4 2.000

cc1.4xlarge 26(464.19)1a 23 1.600

cg1.4xlarge 26(464.19)1b 22 2.100

Resource Type Example Use AWS Service Service Unit Size Tiers
(per Month)

Cost ($/GB/Month)

Storage Maintaining 5 buckets
(4650 GB data files and
1630 GB results) for 4
months costs $32.20.

S3 S3 Bucket Virtually unlimited First 1 TB 0.140

Next 49 TB 0.125

Next 450 TB 0.110

Next 500 TB 0.095

Next 4000 TB 0.080

5,000+ TB 0.055

Attaching 3 EBS volumes to
an instance (26100 GB and
1630 GB) for 1 month costs
$23.00.

EBS EBS Volume Up to 1 TB N/A 0.100

Resource Type Example Use AWS Service Service Unit Data Transfer Type Cost ($/GB/Month)

Data Transfer Uploading 230 GB of data
to S3 and downloading 12
GB of results costs $25.00.

EC2, S3 I/O Data IN 0.000 (free)

Data OUT First 1 GB 0.000 (free)

Data OUT Next 10 TB 0.120

Data OUT Next 40 TB 0.090

Data OUT Next 100 TB 0.070

Data OUT 150 TB+ 0.050

Between AWS Services3 0.000

EBS I/O4 Per 1 m I/O Requests 0.100

S3 API Request4 PUT, COPY, POST, LIST Request 0.01 (per 1,000)

GET Request 0.01 (per 10,000)

Prices are current as of 7/05/11.
1CPUs are in terms of a 1-GHz Opteron 2007 processor, unless otherwise noted. For example, a machine with four 1-GHz processors would be listed as 461.
1aCPU is a quad-core Xeon X5570, i.e., two quad-core CPUs, where each core is 4.19 GHz.
1bCPU is a quad-core Xeon X5570, and instance includes two NVIDIA Tesla "Fermi" M2050 GPUs.
2Costs reflect standard EC2 use with Linux OS. Costs increase when using Windows and decrease when using Reserved Instances (up-front payment) or Spot Instances
(user-specified price on unused EC2 capacity).

3Within same AWS availability region (e.g., AWS US-East).
4Request costs are more difficult to estimate, and are usually more pertinent when databases and other similar services are involved. Programs like IOSTAT can be used
to estimate EBS requests.

doi:10.1371/journal.pcbi.1002147.t001

PLoS Computational Biology | www.ploscompbiol.org 2 August 2011 | Volume 7 | Issue 8 | e1002147

sents digital proof of the user’s identity.

Public/private keys provide a more secure

login authentication method than user-

names and passwords. To grant someone

access to an instance, the public key must

be copied into the list of authorized keys.

Access an Instance Using a Secure
Connection

For security of data and encryption of

data transfers, it is imperative that access

to an instance is via a secure protocol such

as Secure Shell (ssh) or Secure Copy (scp).

Both the AWS Web console and com-

mand line tools provide a simple interface

to generate key pairs when launching an

instance. The public key is automatically

installed onto an instance, and the private

key can then be used on a computer that

will ssh into that instance.

Create Restricted User Accounts
Recently, AWS introduced Identity and

Access Management (IAM) to offer greater

control and management of multiple users.

Each user has their own set of security

credentials to access cloud resources, eli-

minating the need to share login informa-

tion and keys for the master AWS account

owner. This is important because the master

account contains the personal billing infor-

mation, which, for obvious reasons, should

not be accessible to all users. IAM can

restrict services based on specific users or

group policies. For example, it is possible to

restrict a user to a specific S3 bucket

between 9 A.M. and 5 P.M. from a specific

IP address.

Control Access Using Firewalls
A security group defines a set of rules

that govern how traffic (data or commu-

nication) reaches the AWS instance. By

default, the security group restricts all

inbound traffic, allows all outbound traffic,

and allows other instances within the

group to communicate. These rules can

be completely customized; for example, it

is possible to restrict access to a specific IP

address on a specific port address and not

allow that instance to communicate with

other instances within the AWS account.

Additional Security
All security keys should be replaced with

new ones every 30–90 days. Installing

regular software updates is essential to

protect the operating system and third-

party software from vulnerabilities. There

are many additional security features such

as private clouds (http://aws.amazon.

com/vpc/), encrypted file systems, and

encrypted data volumes that may be used

by those who have security needs beyond

these basic best practices.

Prototyping and Development

An often-overlooked aspect of cloud

computing is running only a single in-

stance where scalability is not a require-

ment. Simple tasks such as making certain

programs run faster by using a faster CPU,

increasing the memory, prototyping, or

even small Web applications are easily

addressed by using a more powerful single

instance (Table 1). In some situations, such

as daily analysis or constant development,

the cost is low enough to leave those in-

stances running on a continuous basis.

It is essential to have a clear under-

standing of the technical requirements of

the project in order to select the proper

cloud resources. There are three basic

criteria to consider for a given project to

accurately estimate the cost: hardware,

data, and analysis time. First, estimate the

amount of memory, disk space, and CPUs

needed for the computational task. For

existing software, this is often found in the

user documentation. For new code devel-

opment, it may require an iterative process

to determine the most suitable instance

type. The UNIX ‘‘top’’ command is a

good way to check the resource utilization.

Second, estimate the amount of data

required for analysis. AWS charges per

gigabyte to transfer data out of their cloud

(data transfer in is now free) and also per

gigabyte for persistent storage (Table 1). It

is easy to inadvertently incur unnecessary

transfer costs as a consequence. Third,

estimate the amount of time it will take

to complete the analysis, because AWS

begins charging for an instance the

moment it is launched. Importantly, there

are no cost savings by running fewer than

the maximum number of instances neces-

sary to complete an analysis because the

cost is based on the amount of time an

instance is running. For example, using

half the number of instances, the job will

take twice as long to finish and will end up

costing the same amount based on in-

stance runtime—meaning, there is no

reason to wait longer for your results than

you have to.

Developing a Scalable
Computing Environment

A large-scale computing environment

that scales up or down in response to

computational demand is the most com-

monly perceived use of cloud computing

because it takes full advantage of rapid

replication and linear scaling of cheap

commodity compute cycles. However, it is

important to remember that the cloud

does not ‘‘magically’’ enable programs to

run more efficiently or in parallel (unless

the code was already written that way).

Instead, it requires an understanding of

how to connect multiple instances together

to form a cluster and knowledge of how to

divide a computational task into sub-

components that can run simultaneously.

Until recently, cluster creation was oner-

ous, requiring substantial amounts of

customized solutions handled best by an

expert in systems administration and

computer science. Fortunately, new ad-

vances in open source cluster management

software such as StarCluster (http://web.

mit.edu/stardev/cluster/), Boto (http://

code.google.com/p/boto/), Condor (http:

//www.cs.wisc.edu/condor/), and Hadoop

(http://hadoop.apache.org/mapreduce/) are

making cluster creation, termination, and

job queuing more automated and accessi-

ble to bioinformatics specialists with per-

haps only a limited understanding of

systems administration and architecture.

Within AWS, there is also the option to use

Elastic Map Reduce (AWS’s implemen-

tation of Hadoop) or high performance

computing instances (http://aws.amazon.

com/ec2/hpc-applications/) for an addi-

tional cost per instance. Note that an

important consideration for a large cluster

is to shut down instances when the number

of CPUs is greater than the number of jobs.

This will reduce the amount of money

spent on idle CPU time, which can be

substantial for hundreds or thousands of

CPUs [7].

Broadly speaking, scalable computing

can be divided into data-intensive distrib-

uted applications, of which Hadoop is the

prime example, and batch computing,

which includes StarCluster and Condor.

Hadoop is an open source Java software

framework that is composed of two key

services: reliable data storage called the

Hadoop Distributed File System (HDFS)

and a parallel computing technique called

MapReduce [8], which was developed by

Google to take advantage of commodity

computers [9]. Programs must be specifi-

cally written using the MapReduce parallel

programming model. Although there are

many successful applications of Hadoop,

including processing NGS data [1], not all

programs fit this model and learning the

Hadoop framework can be challenging.

Batch computing is a simpler programming

model that operates by creating a set of

tasks that are processed independently and

is typical of institutional clusters that run

LSF or Sun Grid Engine. StarCluster was

created to simplify the cluster creation,

PLoS Computational Biology | www.ploscompbiol.org 3 August 2011 | Volume 7 | Issue 8 | e1002147

management, and job scheduling on AWS.

Because many biomedical computing pro-

jects are easily divided into independent

tasks and using Hadoop is more technical,

we will demonstrate the use of StarCluster

in the case study example.

Case Study: Creating a Whole
Genome Mapping
Computational Framework

To put the previous concepts into

practice, we will walk through the analysis

of a large amount of NGS data. Specifical-

ly, we detail the creation of a pipeline to

process an entire human genome’s worth of

NGS reads using a short read mapping

algorithm. We use the ,4 billion paired 35-

base reads sequenced from a Yoruba

African male [10] to test the pipeline. For

this case study, we selected the open source

sequence alignment tool MAQ [11] to map

the reads and identify the variants. Al-

though there are newer and more efficient

alignment algorithms, MAQ is a good

example of software that was not initially

designed to run in parallel and is typical of

most bioinformatics software. The African

genome read set is 370 GB with individual

files containing nearly 7 million reads each.

Computation time for just one of the 303

read file pairs typically ranges from 4 to

12 hours, and files with more ambiguous

reads may require over a day to be fully

mapped to the reference human genome.

The cloud is an ideal platform for process-

ing this dataset because the computational

resources required to run these intensive

mapping steps can be allocated quickly and

easily, and because mapping short reads to

a reference genome is a task that is readily

distributed over a compute cluster.

Prototyping and Development
(Total Cost: $3.85)

The NGS mapping example begins by

prototyping and testing the whole-genome

mapping pipeline (Figure 1A). At this

stage, we are interested in testing the

mechanics of launching a single instance,

installing MAQ, and processing two trun-

cated files (10,000 reads per file). Based on

the technical requirements specified in the

section above and referring to the MAQ

reference manual, we learn that mapping

1 million paired reads takes on average

10 hours and uses 800 MB of memory.

Therefore, a single extra-large Linux in-

stance (7 GB memory and eight CPUs)

from AWS priced at $0.68/hr can easily

handle the truncated example files contain-

ing 10,000 reads (Table 1). Using the AWS

console, we launch a c1.xlarge instance

type with the latest stable release of

Ubuntu. From the AWS console, we create

a 400 GB EBS volume and attach it to the

running instance. Once the instance boots,

we login via ssh as root administrator using

the public IP address (for example, ec2-184-73-

252-16.compute-1.amazonaws.com), down-

load and install MAQ, and copy the NCBI

reference genome to a directory on the

instance using scp or Wget (http://www.

gnu.org/software/wget/). Next, we format

and mount the EBS volume and create

three directories for testing the mapping

data—small (two files, 10,000 reads), me-

dium (32 files, 1 M reads), and all (entire

genome). Then, we upload the African

genome and the smaller testing files into

the appropriate directories. Following the

MAQ instructions (http://maq.sourceforge.

net/maq-man.shtml) and executing the

mapping and assembly commands, we learn

that it takes 2 hours to analyze one pair of

read files from the ‘‘small’’ directory on the

Figure 1. Step-wise framework for creating a scalable NGS computing application. Using your local computer, ssh into an instance
running in AWS. The costs are representative of actual development time, data transfer into and out of the cloud, and the compute time using AWS
(Table 1). The costs presented may vary, as AWS frequently updates their pricing structure. (A) An additional 3 hours were included for installing
programs and testing the instance for the prototyping phase. (B) An additional 2 hours were included in developing the scalable application to learn
how to use the cluster management software. (C) For the final scaled application, we used a 38-instance cluster.
doi:10.1371/journal.pcbi.1002147.g001

PLoS Computational Biology | www.ploscompbiol.org 4 August 2011 | Volume 7 | Issue 8 | e1002147

EBS volume. However, only one of the

possible eight CPUs on the extra-large

instance is in use because we only issued

one MAQ map command. While we could

manually launch eight MAQ commands, a

better approach would be to use cluster

management software to automatically take

advantage of all eight CPUs and include

additional instances.

Developing a Scalable
Computing Environment (Total
Cost: $49.60)

Next, we will introduce the use of

StarCluster to create and manage a small

test cluster of two instances. StarCluster is

customized for use on AWS and uses the

open source version of Sun Grid Engine

(http://gridscheduler.sourceforge.net/index.

html) to manage batch queuing across

distributed systems, along with OpenMPI

to manage job distribution and instance

communication. The cluster is composed of

a master instance, which is responsible for

managing a larger set of worker instances.

In this example, each worker instance is

able to process eight jobs concurrently and

will contain the necessary software to run

the analysis. In order to get StarCluster

running, we need to work through a few

steps that involve configuring the StarClus-

ter instance type, setting the proper secu-

rity, and installing StarCluster on your local

computer to remotely create and terminate

a cluster.

First, we will configure the StarCluster

base instance type or Amazon Machine

Image (AMI) with our required software.

An AMI packages the operating system,

installed programs, and user settings into

a binary file that can be launched to

exactly replicate an environment. Amazon

creates a unique private ID (default) or

public ID for each AMI to launch identical

instances. We locate the StarCluster AMI

through the AWS console under Commu-

nity AMIs (for example, ami-0af31963),

launch it, and attach the previously

created EBS volume containing the NGS

data to the running instance. Then we

install MAQ and any additional process-

ing scripts as before. Next, we need to

bundle the instance into an AMI in

order to allow StarCluster to launch mul-

tiple identical instances. After bundling

the AMI (http://docs.amazonwebservices.

com/AWSEC2/2011-02-28/UserGuide/),

we record the AMI ID—we will use this

later in the StarCluster configuration file.

We take a snapshot of the EBS volume to

back it up in S3. We will use the snapshot

ID later in the StarCluster configuration file

to allow each instance access to the data.

Second, we follow our best practices

and create a new security group and key

pair for the cluster. This provides more

security control in your AWS account and

allows you to easily revoke credentials in

the unlikely event that the account is

compromised. Should further security be

desired, it is straightforward to create a

‘‘cluster user’’ using IAM to further restrict

access to S3 accounts or limit the number

of instances available to launch.

Third, we install StarCluster on our local

computer following their documentation

(http://web.mit.edu/stardev/cluster/docs/

index.html). The installation package

includes the necessary scripts and con-

figuration files to manage a cluster. The

configuration file contains the various

parameters to specify the cluster creation

such as AMI ID, number of instances to

launch, AWS account credentials, instance

type, key pair, EBS snapshot ID containing

the NGS data, and security group.

At this point in our case study, we are

interested in testing the scalability of the

NGS mapping pipeline by creating a small

cluster and confirming that the environment

is functioning as expected (Figure 1B). Using

StarCluster and the appropriate configura-

tion file, we launch a two-instance cluster

from the command line on our local

machine. StarCluster returns the IP address

of the master instance and from there we can

ssh into the instance, verify Sun Grid Engine

is running using the command ‘‘qhost’’, and

run a script to launch a set of jobs from the

medium directory on the EBS volume using

standard Sun Grid Engine options. For this

example, a job is defined as mapping each

read file to the reference genome. This is an

independent task—meaning it does not

require additional information from other

reads or jobs to be completed successfully.

We monitor the job progress using the

command ‘‘qstat’’ (http://gridscheduler.

sourceforge.net/htmlman/manuals .html).

When the jobs are finished, we can save the

results on the EBS volume and shut down

the cluster.

Scaled Production Environment
(Total Cost: $320.10)

We now expand our case study to the

next level of usage, one that best exempli-

fies the most common conception of cloud

computing: a virtually unlimited computa-

tional environment, which an analysis task

will harness for rapid completion. Howev-

er, getting to this point requires successful

prototyping of an application, namely the

prior two stages outlined above, on the

cloud and ensuring that your application

and pipeline can run on two or more inter-

communicating instances.

Returning to our case study, we want to

create the environment to process the

entire human genome (Figure 1C). The

previous discussion laid the foundation for

creating a scalable computing environment

such that increasing the cluster size is as

easy as modifying the StarCluster configu-

ration script—in this case we specify 38

instances (38 * 8 CPUs = 304 CPU cluster)

in the configuration file. After launching

the cluster, we update our job submission

script to use the appropriate directory on

the EBS volume that contains the entire

370 GB read data. We also configure Sun

Grid Engine to only allow jobs to run for a

maximum of 10 hours in order to manage

the cost. If a job does not finish within

that time limit, it will automatically be

terminated and noted in the log file for

future analysis. We save the final alignment

results to the EBS volume and copy the file

(142 GB) to our local computer and

terminate the cluster.

Summary

In this overview to biomedical comput-

ing in the cloud, we discussed two primary

ways to use the cloud (a single instance or

cluster), provided a detailed example using

NGS mapping, and highlighted the asso-

ciated costs. While many users new to the

cloud may assume that entry is as

straightforward as uploading an applica-

tion and selecting an instance type and

storage options, we illustrated that there is

substantial up-front effort required before

an application can make full use of the

cloud’s vast resources. Our intention was

to provide a set of best practices and to

illustrate how those apply to a typical

application pipeline for biomedical in-

formatics, but also general enough for

extrapolation to other types of computa-

tional problems. Our mapping example

was intended to illustrate how to develop a

scalable project and not to compare and

contrast alignment algorithms for read

mapping and genome assembly. Indeed,

with a newer aligner such as Bowtie [9], it

is possible to map the entire African

genome using one m2.2xlarge instance in

48 hours for a total cost of approximately

$48 in computation time. In our example,

we were not concerned with data transfer

rates, which are heavily influenced by the

amount of available bandwidth, connection

latency, and network availability. When

PLoS Computational Biology | www.ploscompbiol.org 5 August 2011 | Volume 7 | Issue 8 | e1002147

transferring large amounts of data to the

cloud, bandwidth limitations can be a

major bottleneck, and in some cases it is

more efficient to simply mail a storage

device containing the data to AWS (http://

aws.amazon.com/importexport/). More

information about cloud computing, de-

tailed cost analysis, and security can be

found in references [12–14].

References

1. Langmead B, Schatz MC, Lin J, Pop M,
Salzberg SL (2009) Searching for SNPs with

cloud computing. Genome Biol 10: R134.
2. Langmead B, Trapnell C, Pop M, Salzberg SL

(2009) Ultrafast and memory-efficient alignment

of short DNA sequences to the human genome.
Genome Biol 10: R25.

3. Schatz MC (2009) CloudBurst: highly sensitive
read mapping with MapReduce. Bioinformatics

25: 1363–1369.
4. Wall DP, Kudtarkar P, Fusaro VA, Pivovarov R,

Patil P, et al. (2010) Cloud computing for

comparative genomics. BMC Bioinformatics 11:
259.

5. Halligan BD, Geiger JF, Vallejos AK, Greene AS,
Twigger SN (2009) Low cost, scalable proteomics

data analysis using Amazon’s cloud computing

services and open source search algorithms.
J Proteome Res 8: 3148–3153.

6. Vaquero L, Merino L, Caceres J, Lindner M
(2009) A break in the clouds: towards a cloud

definition. ACM SIGCOMM Computer Com-
munication Review 39: 50–55.

7. Kudtarkar P, Deluca TF, Fusaro VA, Tonellato PJ,
Wall DP (2010) Cost-effective cloud computing: a

case study using the comparative genomics tool,

roundup. Evol Bioinform Online 6: 197–203.
8. Dean JG, Ghemawat S (2004) MapReduce:

simplified data processing on large clusters.
OSDI’04: Proceedings of the 6th conference on

Symposium on Opearting Systems Design &
Implementation; 6–8 December 2004; San Fran-

cisco, California, USA. Volume 6. New York:

ACM. pp 137–150.
9. Taylor RC (2010) An overview of the Hadoop/

MapReduce/HBase framework and its current
applications in bioinformatics. BMC Bioinfor-

matics 11(Suppl 12): S1.

10. Bentley DR, Balasubramanian S, Swerdlow HP,
Smith GP, Milton J, et al. (2008) Accurate whole

human genome sequencing using reversible
terminator chemistry. Nature 456: 53–59.

11. Li H, Ruan J, Durbin R (2008) Mapping short

DNA sequencing reads and calling variants using

mapping quality scores. Genome Res 18: 1851–

1858.

12. Armbrust M, Fox A, Griffith R, Joseph AD,

Katz RH, et al. (2009) Above the clouds: a

berkeley view of cloud computing. Berkeley:

EECS Department, University of California,

Berkeley.

13. Rosenthal A, Mork P, Li MH, Stanford J,

Koester D, et al. (2009) Cloud computing: a

new business paradigm for biomedical informa-

tion sharing. J Biomed Inform 43: 342–353.

14. Schadt EE, Linderman MD, Sorenson J, Lee L,

Nolan GP (2010) Computational solutions to

large-scale data management and analysis. Nat

Rev Genet 11: 647–657.

PLoS Computational Biology | www.ploscompbiol.org 6 August 2011 | Volume 7 | Issue 8 | e1002147

